
PRINCIPLE FUNCTION

Capacitance/Voltage converter IC with an adjustable, differential output and temperature detection

Typical applications

CAV444 is an integrated capacitance-to-voltage transducer. The IC is particularly suitable for all measurements designed to convert a capacitive input signal into a voltage that is direct proportional to the change in the capacitance to be measured. It can be used for:

- Measurement of humidity
- Level sensing
- Material identification
- Object detection
- The IC can be used as an input circuit for microprocessors or as a stand-alone IC

 Phone:
 +49 (0)6131/91 0730-0

 Fax:
 +49 (0)6131/91 073-30

 Internet:
 http://www.analogmicro.de

 Email:
 info@analogmicro.de

Analog Microelectronics GmbH An der Fahrt 13, D – 55124 Mainz

Mai 2010 - Rev 1.1 - Page 1/12

CONTENTS

PRINCIPLE FUNCTION	1
FEATURES	3
GENERAL DESCRIPTION	3
PRINCIPLE OF MEASUREMENT	4
HOW CAV444 WORKS	4
TRANSFER FUNCTION (FULL-SCALE OUTPUT SIGNAL)	5
TRANSFER FUNCTION (WITH ADDITIONAL OFFSET ADJUSTMENT)	6
OUTPUT VOLTAGES	8
THE DIMENSIONING PROCESS	8
INITIAL OPERATION	8
STANDARD DIMENSIONING	10
BOUNDARY CONDITIONS	10
APPLICATIONS	11
BLOCK DIAGRAM AND PINOUT	11
DELIVERY	11
ADDITIONAL EQUIPMENT	12
FURTHER READING	12
NOTES	12

 Phone:
 +49 (0)6131/91 0730-0

 Fax:
 +49 (0)6131/91 073-30

 Internet:
 http://www.analogmicro.de

 Email:
 info@analogmicro.de

Analog Microelectronics GmbH An der Fahrt 13, D – 55124 Mainz

Mai 2010 - Rev 1.1 - Page 2/12

FEATURES

- Differential output signal
- Wide capacitor measuring range: 18 pF to 2.2 nF
- Linear transfer behavior
- Adjustable offset voltage
- Adjustable full-scale signal
- Detection frequency: 15 Hz to 1.9 kHz
- Measurement oscillator frequency: 1 kHz to 130 kHz
- Wide dynamic range detection
- Wide temperature range: -40°C...+85°C
- Simple calibration (Excel program)
- RoHS compliant

GENERAL DESCRIPTION

CAV444 is an integrated C/V transducer that contains full signal conditioning electronics for the linear conversion of capacitive input signals into a suitable differential output voltage. It also has an additional temperature detector. The output signal is proportional to the change in capacitance $\Delta C_M = C_{M,max} - C_{M,min}$.

A differential voltage referenced to internal reference voltage V_{REF} is generated as an output signal. This output voltage has been specially designed for connection to a following A/D converter.

As this is an analog circuit, its resolution are only limited by noise.

Together with the integrated temperature sensor of the CAV444 and a processor, electronically calibratable systems can be assembled.

A simple Excel software program eases the dimensioning of CAV444.

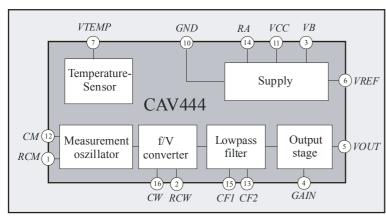


Figure 1: Block diagram of CAV444

 Phone:
 +49 (0)6131/91 0730-0

 Fax:
 +49 (0)6131/91 073-30

 Internet:
 http://www.analogmicro.de

 Email:
 info@analogmicro.de

Analog Microelectronics GmbH An der Fahrt 13, D – 55124 Mainz

Mai 2010 - Rev 1.1 - Page 3/12

BLOCK DIAGRAM

PRINCIPLE OF MEASUREMENT

CAV444 is an integrated C/V (capacitance-to-voltage) converter circuit that contains full signal conditioning and evaluation electronics for linear, capacitive signal sources.

The principle of measurement behind CAV444 is the conversion of a change in capacitance (measurement capacitor, C_M) into a linear, differential output voltage. Measurement capacitor C_M can be altered by the amount $\Delta C_M = C_{M,max} - C_{M,min}$ ($C_{M,min}$ is the basic capacitance of C_M).

HOW CAV444 WORKS

The CAV444 IC functions according to the following principle. The measurement capacitor is the capacitor of an internal measurement oscillator. This generates the clock pulse with which the measurement capacitor is charged and discharged. The number of clock pulses provided depends on the measurement capacitor. These are converted into a DC voltage signal in the f/V converter and in the backend lowpass filter. The filtered DC voltage signal travels to an adjustable amplifier stage that enables the output signal to be set to the required value.

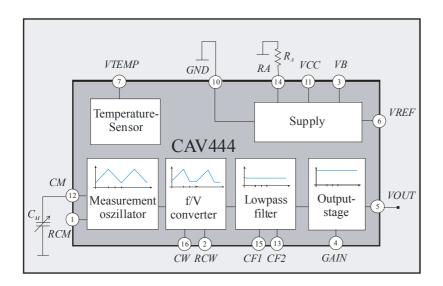


Figure 2: Block diagram of CAV444 with signal patterns

 Phone:
 +49 (0)6131/91 0730-0

 Fax:
 +49 (0)6131/91 073-30

 Internet:
 http://www.analogmicro.de

 Email:
 info@analogmicro.de

Analog Microelectronics GmbH An der Fahrt 13, D – 55124 Mainz

Mai 2010 - Rev 1.1 - Page 4/12

TRANSFER FUNCTION (FULL-SCALE OUTPUT SIGNAL)

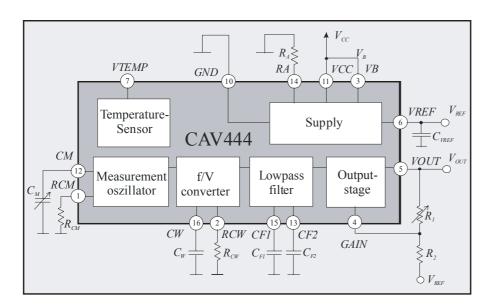


Figure 3: CAV444 with circuitry for full-scale adjustment

Transfer function V_{OUT^*} for the CAV444 full-scale output signal is expressed as:

 $V_{OUT}^{*} = V_{DIFF}^{*} + V_{REF} \tag{1}$

where
$$V_{REF}$$
 = reference voltage and $V_{DIFF}^* = G_{LP} \cdot V_{TPAS}$ (2)

The following applies to
$$G_{LP}$$
: $G_{LP} = 1 + \frac{R_1}{R_2}$ (3)

and to the output voltage after the lowpass:
$$V_{TPAS} = \frac{3 \cdot C_M \cdot \Delta V_{CM} \cdot R_{CM}}{8 \cdot C_W \cdot R_{CW}}$$
 (4)

with
$$\Delta V_{CM} = 2.1V$$
.

analog microelectronics

 Phone:
 +49 (0)6131/91 0730-0

 Fax:
 +49 (0)6131/91 073-30

 Internet:
 http://www.analogmicro.de

 Email:
 info@analogmicro.de

Analog Microelectronics GmbH An der Fahrt 13, D – 55124 Mainz

Mai 2010 - Rev 1.1 - Page 5/12

Equation (2) implies that signal V_{TPAS} is amplified by an internal operational amplifier in the output stage, where gain G_{LP} can be determined by resistors R_1 and R_2 . Resistor R_A is used to set the supply for the f/V converter. Pin VB is for internal biasing and must be connected up to supply voltage V_{CC} .

With equations (3) and (4) incorporated into (2), the transfer function for the full-scale signal (1) is accrued as:

$$V_{OUT} * = V_{DIFF} * + V_{REF} = G_{LP} \cdot V_{TPAS} + V_{REF} = \left(1 + \frac{R_1}{R_2}\right) \cdot \left(\frac{3 \cdot C_M \cdot \Delta V_{CM} \cdot R_{CM}}{8 \cdot C_W \cdot R_{CW}}\right) + V_{REF}$$
(5)

where $C_W = \frac{C_{M,\text{max}}}{1.6}$. The resistors are defined by the respective load currents and have fixed values of $R_{CM} = 250$ k Ω and $R_{CW} = 500$ k Ω .

We can see that the output voltage is a linearly dependent function of measurable variable C_M ($V_{OUT*} = f(C_M)$), as all other variables are fixed by the dimensioning process.

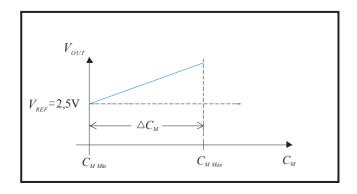


Figure 4: Output signal VOUT* referenced to ground

In *Figure 4* we can recognize that the output signal is raised by V_{REF} . In order to be able to fix the offset, the network must be extended.

TRANSFER FUNCTION (WITH ADDITIONAL OFFSET ADJUSTMENT)

When setting the output signal the adjustability of the offset must be taken into account with the transfer function (5). With regard to *Figure 5*, the transfer function is calculated as:

 $V_{OUT} = V_{DIFF} + V_{REF} = A \cdot V_{TPAS} + B \cdot V_{REF}$

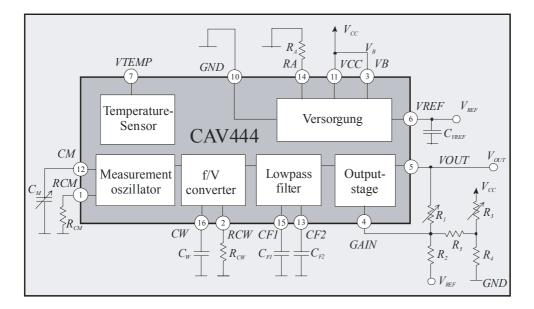
Analog Microelectronics GmbH An der Fahrt 13, D – 55124 Mainz
 Phone:
 +49 (0)6131/91 0730-0

 Fax:
 +49 (0)6131/91 073-30

 Internet:
 http://www.analogmicro.de

 Email:
 info@analogmicro.de

Mai 2010 - Rev 1.1 - Page 6/12


(6)

with the setup coefficient for span as A and the setup coefficient for the offset as B:

$$A = \frac{R_4(R_2R_5 + R_1(R_2 + R_5)) + R_3((R_1 + R_2)R_4 + R_2R_5 + R_1(R_2 + R_5))}{R_2(R_4R_5 + R_3(R_4 + R_5))} \quad \text{and}$$
(7)

$$B = \frac{(R_1 + 2R_2)R_4R_5 + R_3(2R_1R_2 + (R_1 + 2R_2)R_4 + R_1R_5 + 2R_2R_5)}{R_2(R_4R_5 + R_3(R_4 + R_5))}$$
(8)

In the transfer equation resistors R_1 and R_3 used to set the span and offset are variable. They are calculated in the Excel program Kali_CAV444.xls. R₂, R₄ and R₅ are fixed 100k Ω resistors. We can see that the output voltage is a linearly dependent function of measurable variable C_M ($V_{OUT} = f(C_M)$), as all other variables are fixed by the dimensioning process and equation (5).

Figure 5: Full circuit with adjustable full-scale output signal and adjustable offset signal

 Phone:
 +49 (0)6131/91 0730-0

 Fax:
 +49 (0)6131/91 073-30

 Internet:
 http://www.analogmicro.de

 Email:
 info@analogmicro.de

Analog Microelectronics GmbH An der Fahrt 13, D – 55124 Mainz

Mai 2010 - Rev 1.1 - Page 7/12

OUTPUT VOLTAGES

The following applies to the output voltage: $V_{OUT} = V_{DIFF} + V_{REF}$

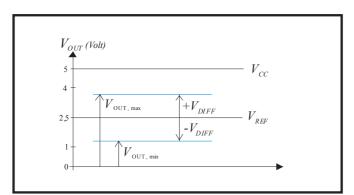


Figure 6: Maximum output voltage VOUT

THE DIMENSIONING PROCESS

Excel program Kali_CAV444.xls should be used for dimensioning purposes.

The dimensioning process for CAV444 assumes that in addition to measurement capacitor C_M and the f/V converter capacitor C_W , parasitic capacitances in both the IC and measurement circuit also influence the signal pattern.

For this reason the offset and full scale are calibrated based on the installed system, where all parasitic capacitances and exemplary variations in the components used have been taken into account.

Taking transfer function (6) as its basis, the Excel spreadsheet Kali_CAV444.xls [1] first computes suitable values for a measurement operating point. The circuit output is measured at this point and these measurements then entered into the program in stage two of the procedure. The algorithm calculates the two adjusting resistors required to calibrate the system. Once these have been placed in the circuit, the calibration of both offset and span is complete.

INITIAL OPERATION

Initial operation is described in detail in the description of the calibration program (see Kali_CAV444.xls).

 Phone:
 +49 (0)6131/91 0730-0

 Fax:
 +49 (0)6131/91 073-30

 Internet:
 http://www.analogmicro.de

 Email:
 info@analogmicro.de

Analog Microelectronics GmbH An der Fahrt 13, D – 55124 Mainz

Mai 2010 - Rev 1.1 - Page 8/12

ELECTRICAL SPECIFICATIONS

$T_{amb} = 25^{\circ}$ C, $V_{CC} = 5$ V (unless otherwise stated)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Supply						
Supply Voltage	V _{cc}	Ratiometric range	4.75	5.00	5.25	V
Quiescent Current	Icc	$T_{amb} = -40+105^{\circ}\text{C}, G_{LP} = 1$	0.6	1.0	1.4	mA
Temperature Specifications				-		
Operating	Tamb		-40		105	°C
Storage	T _{st}		-55		125	°C
Measurement Oscillator				-		
Measurement Capacitor Range	C_M	$I_{CM} = 10\mu A$	18		2200	pF
Oscillator Frequency Range	f_M		1		130	kHz
Oscillator Current	Ісм	$R_{CM} = 250 \mathrm{k}\Omega$	9.5	10	10.75	μΑ
Detection Frequency	f _{sig}				1.9	kHz
f/V Converter						•
Converter Capacitor Range	C_W	$C_W = C_{M,max} / 1.6$ $I_{CW} = 5 \ \mu A$	11.25		1375	pF
Capacitive Charge Current	I _{CW}	$R_{CW} = 500 \text{ k}\Omega$	4.75	5	5.38	μΑ
Lowpass Stage	"					
Adjustable Gain	G_{LP}		1		10	
Output Voltage	V _{OUT}	$V_{out} = V_{Diff} + V_{REF}$	1.1		$V_{CC} - 1.1$	v
Corner Frequency 1	f_{CF1}	$R_{01} = 20 \text{ k}\Omega, C_{F1} = 1 \text{ nF}$			8	kHz
Corner Frequency 2	f_{CF2}	$R_{02} = 20 \text{ k}\Omega, C_{F2} = 1 \text{ nF}$			8	kHz
Resistive Load at pin VOUT	R_L		200			kΩ
Capacitive Load at pin V _{OUT}	C_L				50	pF
Output Voltage Shift	V_{DIFF}	VM = 2.5 V	-1.4		1.4	V
Temperature Coefficient V_{DIFF} (together with Input Stages)	$\mathrm{d}V_{DIFF}/\mathrm{d}T$	$T_{amb} = -40+105^{\circ}C$		±100		ppm/°C
Internal Resistors 1 and 2	R_{01}, R_{02}			20		kΩ
Temperature Coefficient $R_{01,02}$	$dR_{01,02}/dT$	$T_{amb} = -40+105^{\circ}C$		1.9		10 ⁻³ /°C
Ratiometric Error of V _{OUT}	$RAT@V_{DIFF}*$			0.11		% FS
Voltage Reference V _{REF}						•
Voltage	V_{REF}	Ratiometric to V _{CC}		2.5		V
V_{REF} vs. Temperature	$\mathrm{d}V_{REF}/\mathrm{d}T$	$T_{amb} = -40+105^{\circ}C$		±20	±50	ppm/°C
Current	I _{VREF}	Source			16	μΑ
	I _{VREF}	Sink			-16	μΑ
Load Capacitance	C_{VREF}		80	100	120	nF
Ratiometric Error of V_{REF}	$RAT@V_{REF}*$			0.007		% FS

* **RAT** @ $V_{DIFF} = 2 [1.05 V_{DIFF}(V_{CC} = 5V) - V_{DIFF}(V_{CC} = 5.25V)]/[V_{DIFF}(V_{CC} = 5V) + V_{DIFF}(V_{CC} = 5.25V)]$ ** RAT @ $V_M = 2 [1.05 V_M(V_{CC} = 5V) - V_M(V_{CC} = 5.25V)]/[V_M(V_{CC} = 5V) + V_M(V_{CC} = 5.25V)]$

analog microelectronics

 Phone:
 +49 (0)6131/91 0730-0

 Fax:
 +49 (0)6131/91 073-30

 Internet:
 http://www.analogmicro.de

 Email:
 info@analogmicro.de

Analog Microelectronics GmbH An der Fahrt 13, D – 55124 Mainz

Mai 2010 - Rev 1.1 - Page 9/12

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Temperature Sensor V _{TEMP}						
Voltage	V _{TEMP}	$R_{TEMP} \ge 50 \mathrm{M}$	2.20	2.32	2.45	V
Sensitivity	$\mathrm{d}V_{TEMP}/\mathrm{d}T$	$R_{TEMP} \geq 50 \mathrm{M}$		8		mV/°C
Thermal Nonlinearity		$R_{TEMP} \ge 50 \mathrm{M}$, end point method		0.5		% FS

Table 1: Electrical specifications for CAV444

Notes:

- 1) Currents flowing into the IC are negative.
- 2) R_{TEMP} is the minimum possible load resistance at pin VTEMP.

In order to achieve as good a temperature behavior as possible, it is essential that resistors R_{CM} and R_{CW} have the same temperature coefficients and that they are placed very close together in the circuit.

STANDARD DIMENSIONING

Parameter	Symbol	Min.	Тур.	Max.	Unit
Output Stage Resistors (1%)	R_2 , R_4 , R_5		100		kΩ
Full-Scale Resistor (0.1%), Calibration Start Value*	R_I		33		kΩ
Offset Resistor (0.1%), Calibration Start Value*	R_3		100		kΩ
f/V-Stage Biasing Resistor	R_A		240		kΩ
Measurement Oscillator Resistor	R _{CM}		250		kΩ
f/V-Stage Filter Resistor	R_{CW}		500		kΩ
Filter Capacitors (vary with value of C _{M,min})**	C_{FI} , C_{F2}	3.8		440	nF
Reference Voltage Capacitor ($V_{REF} = 2.5$ V)	C_{VREF}	80	100	120	nF

Table 2: Standard values for external components

- *) R₁ and R₃ are the initial values given at the start of the calibration process (Kali_CAV444.xls). During calibration, these are replaced by precisely computed, individual values.
- **) C_{F1} and C_{F2} are dimensioned by the calibration program.

BOUNDARY CONDITIONS

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Maximum Supply Voltage	V _{CCmax}				17	V
Oscillator Frequency Range	fosc		1		130	kHz
f/V Converter Current	I _{CW}	$R_{CW} = 500 \text{ k}\Omega$			5.38	μΑ
Measurement Oscillator Current	I _{CM}	$R_{CM} = 250 \text{ k}\Omega$			10.75	μΑ

Table 3: Boundary conditions

 Phone:
 +49 (0)6131/91 0730-0

 Fax:
 +49 (0)6131/91 073-30

 Internet:
 http://www.analogmicro.de

 Email:
 info@analogmicro.de

Analog Microelectronics GmbH An der Fahrt 13, D – 55124 Mainz

Mai 2010 - Rev 1.1 - Page 10/12

APPLICATIONS

Example applications are generated by dimensioning the circuit in *Figure 5* with the help of the calibration program Kali_CAV444.xls [1]

BLOCK DIAGRAM AND PINOUT

PIN	NAME	DESCRIPTION			
1	RCM	Current setting for the measurement oscillator			
2	RCW	Current setting for the f/V converter			
3	VB	Bias voltage \rightarrow V _{CC}			
4	GAIN	Gain setting			
5	VOUT	Output voltage			
6	VREF	Reference voltage 2.5 V			
7	VTEMP	Temperature sensor output			
8	N.C.	Not connected			
9	N.C.	Not connected			
10	GND	IC ground			
11	VCC	Supply voltage			
12	СМ	Measurement capacitor/measurement oscillator capacitor			
13	CF2	Lowpass capacitor 2, corner frequency 2			
14	RA	Stabilizing resistor for f/V converter			
15	CF1	Lowpass capacitor 1, corner frequency 1			
16	CW	f/V converter capacitor			

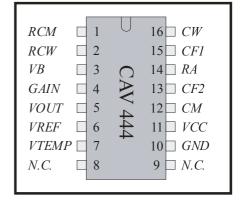


Figure 10: CAV444 Pin out

Table 4: CAV444 Pin out

DELIVERY

CAV444 is available as:

- An SO16 (n); see data sheets: package
- For sample batches CAV444 can be supplied on a DIL16 SO16 adapter (CAV444Adapt)

Package dimensions: see http://www.analogmicro.de/products/analogmicro.de.en.package.pdf

Analog Microelectronics GmbH An der Fahrt 13, D – 55124 Mainz
 Phone:
 +49 (0)6131/91 0730-0

 Fax:
 +49 (0)6131/91 073-30

 Internet:
 http://www.analogmicro.de

 Email:
 info@analogmicro.de

Mai 2010 - Rev 1.1 - Page 11/12

ADDITIONAL EQUIPMENT

For design purposes, by way of support Analog Microelectronics can also supply a starter kit which consists of a breadboard (**BBCAV444**) (which has been assembled for a specific set of parameters but which can also be used for individual measurements), a description and the spreadsheet Kali_CAV444.

FURTHER READING

Please see our website for further information (www.analogmicro.de):

[1] http://www.analogmicro.de/english/index.html - Kali_CAV444.pdf

NOTES

Analog Microelectronics GmbH An der Fahrt 13, D – 55124 Mainz
 Phone:
 +49 (0)6131/91 0730-0

 Fax:
 +49 (0)6131/91 073-30

 Internet:
 http://www.analogmicro.de

 Email:
 info@analogmicro.de

Mai 2010 - Rev 1.1 - Page 12/12